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Abstract

It is widely recognized that device and interconnect fabrics at the nanoscale will be character-
ized by an increased susceptibility to transient faults. This appears to be intrinsic to nanoscale
regimes and fundamentally limits the eventual benefits of the increased device density, i.e., the
overheads associated with achieving fault-tolerance may counter the benefits of increased device
density – density-reliability tradeoff. At the same time, as devices scale down one can expect a
higher proportion of area to be associated with interconnection, i.e., area is wire dominated. This
paper theoretically explores density-reliability tradeoffs in wire dominated integrated systems. We
derive an area scaling model based on simple assumptions capturing the salient features of hier-
archical design for high performance systems. We then evaluate overheads associated with using
basic fault-tolerance techniques at different levels of the design hierarchy. This, albeit simplified
model, allows us to tackle several interesting questions: When does it make sense to use smaller
less reliable devices? At what scale of the design hierarchy should fault tolerance be applied in
high performance integrated systems? Our analysis reveals two critical parameters, the technology
and design scaling factors, which are key to predicting the reliability requirements for emerging
technologies if traditional hierarchical design continues to be used.

1 Introduction

Future integrated systems will be implemented on increasingly dense substrates. These in turn
are expected to be characterized by high densities of manufacturing defects and high rates of tran-
sient faults [1, 2, 3, 4]. In order to achieve a desired manufacturing yield and system reliability,
engineers will have to apply defect- and fault-tolerance techniques. These techniques will nec-
essarily incur overheads associated with additional circuitry and redundancy [5]. Such overheads
take up area on the chip and thus increase power consumption. Thus, it is possible that the defect-
and fault-tolerance overheads may grow faster than extra area afforded by the increased density of
devices and wires the new technologies provide. This can happen if the reliability of the substrate
drops quickly with increasing density. This paper develops a theoretical model to study when this
is indeed the case.

Another key observation is that as technology scales down, the impact on area and power con-
sumption of wires grows faster than that of devices (at least for high performance systems). This
is supported empirically by Rent’s Rule [6, 7]. It states that the number of external wires for a
circuit sub-block is proportional to the size of this sub-block (e.g. in gates) to the power r where
r is referred to as Rent’s exponent and is typically about 0.6-0.7 for high performance systems.
Rent’s Rule can be viewed as arising from consistency across design hierarchy levels – i.e., reflects
a design style based on interconnection of increasingly complex sub-blocks. The exponent may

1



vary from system to a system (or sometimes even within a given system at different levels of hier-
archy) reflecting not only design style, but also, the type of functionality being implemented. When
Rent’s exponent is greater than 0.5 for a 2D circuit, then the density of wires increases with system
size growth provided that gates are tightly packed. This is reflected in the increase in metallization
layers used for chips over the last decades – from 1 to 10 or more layers in today modern chips. It
is technologically problematic to continue increasing the number of layers, so at some point it will
become impossible to pack devices tightly due to the area required for wiring. At that point a chip’s
area will be wire dominated.

In such regimes (dynamic) power consumption may also be wire dominated. Indeed, static power
consumption depends mostly on device physics, while dynamic power consumption is roughly
proportional to load capacitance which already is dominated by wires in modern technologies. For
example [8] consider a 3D design where devices were stacked vertically in 4 planes and show
that the major effect is a reduction in wire length accompanied by a dramatic reduction in power
consumption. Thus to understand the fundamental characteristics of future technologies, one must
properly reflect wires’ increasingly dominant influence on area, power and even performance.

In this paper we consider substrate technologies that are capable of delivering a high density
of devices and wires but along with higher defect densities and transient fault rates. In Section
2 we propose and analyze an area scaling model for such technologies based on several natural
assumptions. The model exhibits how area grows with complexity of the system (number of gates)
in a wire dominated regime. Using this scaling model we consider the overheads associated with
achieving fault-tolerance by applying spatial redundancy at different levels of system hierarchy.
This simple model enables us to address two questions. When do smaller, but less reliable devices
make sense, and at what level of the design hierarchy should fault tolerance be applied? The main
contribution of this paper lies in combining a novel scaling model (capturing the wire dominated
regimes of interest) with traditional reliability analysis to tackle these questions. This might be
viewed in contrast to research initiated by [9] tackling computability with unreliable devices, but
ignoring device and wiring overheads, see e.g., [10, 11]. By considering wire dominated regimes
our work also differs from previous work considering reliability and overhead models based solely
on gate count see e.g., [12]. Section 2 of this paper focuses only on gate reliability, while Section 3
motivates a general model both gates and wires may fail. This permits us to consider the manner in
which device vs wire reliability impact the usefulness of a given technology. Section 4 offers some
closing comments and perspective for this work.

2 Scaling Model and Basic Reliability Analysis

This section presents a novel area scaling model, capturing the wire dominated regime, which
is then used to evaluate the density-reliability tradeoffs. We begin by carefully introducing several
natural assumptions which underly our model.
2.1 Wire Dominated Area Scaling

The first assumption concerns interconnection across hierarchical levels. Traditional hierarchical
design approaches to building increasingly complex systems are based on interconnecting sub-
blocks. For example a pipelined CPU is realized based on blocks such as a fetch instruction stage,
decode instruction stage, execute stage, registers file, external memory block, etc. The execute stage
is itself built using different functional blocks (e.g., full word adders, multipliers, etc), where each
block is built out of smaller blocks (e.g., one bit adders, etc). As a result when such systems are
implemented on a substrate they lack structural regularity across hierarchical levels. By contrast,
for intrinsically regular functions (e.g., memory arrays, FPGAs) one can adopt a more flat design
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style where the system is comprised of a large number of simple blocks. The implementation of
such systems might eventually reflect regularity in placement and routing. In this paper we focus
on hierarchical designs whose eventual implementations on a substrate would exhibit ‘irregular’
routing and placement across levels of the hierarchy.
Assumption 2.1. (Hierarchical consistency) We consider systems designed in a hierarchical man-
ner across multiple levels. Hierarchical consistency in interconnecting sub-blocks at different levels
means that Rent’s Rule should apply. Specifically,

Next(M) = kwM r,

where Next(M) is number of external wires for a block with M gates (or sub-blocks) and r is Rent’s
exponent (typically 0.6-0.7), kw is a proportionality constant relating external wires to number of
gates to the rth power.

Following [13] we refer to Rent’s Rule as satisfying hierarchical consistency. Indeed, consider
creating a block by composing P sub-blocks each comprised of M gates. By Rent’s rule each sub-
block has Next(M) external wires and the number of external wires for the larger block should be
Next(M)P r . Yet the larger block has a total of MP gates, hence the total number of external wires
should also be given by

Next(MP ) = kw(MP )r = (kwM r)P r = Next(M)P r,

which exhibits the above mentioned hierarchical consistency. Note that Rent’s Rule deals with log-
ical wires, i.e., abstract connections among blocks [6, 7]. These logical wires may be implemented
using one or more physical wires. So, for example, repeaters may be inserted along a logical wire
subdividing it into several physical wires. The area cost of such a logical wire will be defined as its
constituent physical wires and devices used to realize it. This leads us to our second assumption.
Assumption 2.2. (Wire area) We assume block’s area is the sum of its constituent gates and wires.
The area of a wire is assumed to be proportional to its length, i.e.,

Aw(l) = kll,

where Aw(l) denotes the area of a wire of length l and kl is a proportionality constant.
We measure length in linear minimal gate sizes, i.e., the linear minimal gate size lg is 1. Similarly

area is measured in minimal gate areas, so that minimal area of a gate is ag = l2g = 1. In these units
the kl reflects average area per unit length wire in units of minimal gate area. Note however that a
chip may have several metal layers that would result in a smaller coefficient kl, e.g., 10 metal layers
at best gives 10 times the area to route wires, reducing the coefficient by a factor of 10.

In general we expect Assumption 2.2 to be reasonable. A wire’s area is unlikely to grow sub-
linearly in its length. In some cases it may grow super-linearly, e.g., if high performance is required,
extra wide wires may be used to reduce resistance or extra repeaters to reduce latency. One can
expect such wires to be only a small fraction which are on critical paths, and thus they would not
significantly impact the overall scaling of area. As discussed in the introduction the dynamic power
consumption of a wire is proportional to load capacitance, which in turn is roughly proportional to
its area. Thus the total wire area can be used as a rough estimate dynamic power consumption.

The third assumption reflects our focus on hierarchically designed systems, which when mapped
onto substrates exhibit irregular routing and placement.
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Assumption 2.3. (Irregular routing) The average length of wires used to interconnect sub-blocks
having area A is proportional to their linear size, i.e.,

Lw(A) = kr

√
A,

where Lw(A) is the average length of wires interconnecting blocks having area A, and kr is a
proportionality constant reflecting the design’s characteristics.

Note that interconnecting wires at a given scale, i.e., interconnecting blocks of a given size A,
may have varying length, i.e., some may be short. Through Assumption 2.3 we posit that for
systems which are hierarchically designed, resulting in irregular routing and placement, one should
still expect the average length of such interconnections to be on the order of the linear size of the
blocks they interconnect.

With these three assumptions in place one can show an area scaling law in system complexity
(number of gates) capturing dominant role of wires on the area.
Theorem 2.4. (Wire dominated area scaling) Under Assumptions 2.1-2.3 the growth in area A
with system complexity M (in gates) satisfies the following differential equation:

dA =
A

M
dM + kl(kr

√
A)(kw(1 − r)M r−1dM). (1)

The solution to this equation for r 6= 0.5 is given by

A(M) = ag(
√

M + tdM r)2 = ag(M + 2tdM r+0.5 + (td)2M2r), (2)

where t = klkw
√

ag
is referred to as the technology scaling factor while d = kr

1−r
2r−1

is a design scaling
factor.

We sketch the proof for Theorem 2.4 as follows. The differential growth in area represented by
Eq. 1 has two terms on the right hand side. The first term can be interpreted as follows. Consider
a block of area A with M gates, then the area per gate and internal wires for such a block is A/M
thus if additional dM gates are added to create larger blocks, area should grow proportionally to
A/M . The second term represents additional area associated with wires interconnecting blocks
of size M . Consider a block of size M2 consisting of M2/M1 sub-blocks of size M1. By Rent’s
Rule the total number of external wires for all blocks of size M1 is M2

M1
Next(M1). This includes

some of the internal and all of the external wires for the block of size M2. However by Rent’s
Rule the number of external wires of the larger block is Next(M2), so the number of wires used to
interconnect blocks of size M1 within M2 is M2

M1
Next(M1)−Next(M2). By hierarchical consistency

and letting M2 = M + dM and M1 = M we obtain a differential number of interconnecting wires
for blocks of size M in the form M+dM

M
Next(M) − Next(M + dM). This can be evaluated using

Rent’s formula. The second term also reflects our assumptions on the length and area of such wires,
i.e., Assumptions 2.2 and 2.3. The solution Eq. 2 can be easily checked by substitution.

Note that the expected A(M) growth includes a linear term in the number of gates, yet the other
terms grow faster than linearly reflecting the dominant role of wires. Two key scaling parameters
emerge. The first, called the technology scaling factor, depends on the average number of wires
per gate kw and wire length per linear gate length kl/

√
ag. The second, referred to as the design

scaling factor, depends solely on characteristics of the design, i.e., on Rent’s exponent r and kr the
parameter capturing the length of wires interconnecting blocks of similar size. The graph on the
left in Fig. 1 exhibits the growth in area per gate, i.e., A(M)/M for d = 1 for different technology
scaling parameters; t=0.1, might be viewed as a baseline where kw =

√
ag, i.e., wire width is the

same as minimal linear gate size and kl = 0.1, e.g., 10 or so packed metallic layers for wiring.
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Figure 1. On the left the area A(M)/M as a function of M for various technology
factors and d = 1. On the right system overhead in area/gate and reliability as the
hierarchical level at which redundancy is applied varies.
2.2 System Reliability and Fault-tolerance Overheads

To evaluate density-reliability tradeoffs, we need to characterize fault-tolerance overheads. The
simplest way to achieve this is n-way spatial redundancy, i.e., replicate an unreliable sub-block
n times and introduce bitwise majority voting to obtain reliable outputs. This approach achieves
an exponential (in n) improvement in reliability with a linear (in n) area overhead. We recognize
there are many alternatives to achieve fault-tolerance. For example, temporal redundancy requires
much less overhead, but can only be applied at a sufficiently high architectural level (i.e., allow-
ing ”rollback”) with blocks having sufficiently high reliability. Our motivation here is to consider
high-performance, computation and/or control functions (e.g., those required to implement tempo-
ral redundancy) where spatial redundancy is a reasonable approach to achieve a significant boost
reliability. We make the following assumption.
Assumption 2.5. (Reliability and redundancy across hierarchical levels)
a. The probability of failure of a system is the sum of the failure probability of its constituent blocks.

Thus a block of size M0 gates has a probability of failure p(M0) = M0pg where pg is the
probability of failure of a gate. Wires and voters are assumed to be reliable for now.

b. Spatial n-way redundancy is used to enhance a system’s reliability. For a system of total size
MS gates, we assume redundancy can be applied at any of a continuum of hierarchical levels,
indexed by the size of the blocks M0, where M0 can range from 1 to MS gates.

Assumption 2.5.a can be viewed as consistency assumption where failure probabilities are addi-
tive across constituent sub-blocks and scales. This corresponds to focusing on a regime where the
failure probabilities are fairly low, and the probability of failure of a block of size M0 gates is linear

p(M0) = 1 − (1 − pg)
M0 ≈ M0pg

if higher order terms can be ignored.
Assumption 2.5.b means that one may apply spatial redundancy to blocks of any size. In practice

this would not be possible, but this idealization allows us to roughly investigate the granularity at
which spatial redundancy should be applied. Specifically, if n-way redundancy is applied across
blocks of size M0 gates the system would have MS/M0 such blocks. Then for n = 3, 5, 7 . . . the
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probability of failure of an n-way redundant block of size M0 is given by
n

∑

i= n+1

2

(

n

i

)

(1 − M0pg)
n−i(M0pg)

i ≈
(

n
n+1

2

)

(M0pg)
n+1

2 .

Finally using Assumption 2.5.a the probability of failure for the overall system PS composed of
MS

M0
such blocks is PS = MS

M0
×

(

n
n+1

2

)

(M0pg)
n+1

2 .

Ignoring voters and associated circuitry, and irrespective of the block granularity M0 at which
n-way spatial redundancy is applied the overall number of gates in the system increases by a factor
of n. However if replication occurs at lower levels of the hierarchy, longer wires will be required
at higher levels of the design hierarchy. Indeed these wires not only get replicated n times, but
also become longer taking even more area. So the total area overhead of realizing n-way spatial
redundancy will be higher if it is realized at a lower level of the design hierarchy.

To properly capture these overheads when n-way spatial redundancy is applied starting at a
hierarchical level M0 we modify Eq. 1 to reflect these redundancy overheads. For M ≤ M0 it
remains the same which by Eq. 2 gives an area A(M0) for a block of size M0. For M > M0

this is modified as follows. The initial condition becomes M = M0. The initial area with n-
way redundancy at scale M0 is nA(M0). The differential growth in area for a system with n-way
redundancy and M > M0 is now given by

dA =
A

M
dM + nkl(kr

√
A)(kw(1 − r)M r−1dM. (3)

This can be viewed as multiplying the design scaling factor by n to capture the additional overhead
associated with redundant wires.

The graph on the right in Fig. 1 shows both the area per gate and the overall system reliability
when 3-way redundancy is applied to blocks M0 ranging from a single gate to the overall system
size MS = 1012 for a fixed probability of gate failure pg = 10−14. As can be seen, if redundancy
is applied at a higher level M0 one sees a lower area overhead but also a lower reliability. Thus
there is a highest scale M0 at which one can apply redundancy to achieve a given overall system
probability of failure PS . This is exhibited graphically on the plot.

Using this model we can consider if it is worth moving to smaller less reliable gates. Consider a
system of fixed complexity (number of gates without redundancy) MS = 1012 to be implemented
on a fixed absolute area, with the fixed acceptable overall probability of failure PS = 10−16. Given
we are using n-way redundancy, we can ask what is the maximum acceptable probability of gate
failure pg such that the overheads associated with reaching the desired PS fit in the absolute area of
interest. As we reduce gate size (area) ag , i.e., increase the density of a technology, we expect to be
able to afford higher overheads for fault-tolerance, allowing higher probabilities of gate failure. The
left plot on the Fig. 2 exhibits curves for the maximum tolerable probability of failure for different
gate sizes and different degrees of n-way redundancy. Horizontal axis on this graph is linear size
of gates measured with respect to size of bigger gates of area ag0 that would give the same total
system area if no redundancy is applied. Such big gates should have probability of failure pg at
most PS/MS = 10−28 to provide target system reliability PS . Note that exhibited curves have a
finite domain representing what is possible when M0 ranges from 1 to MS .

These curves reflect limits on the reliability of gates, i.e., where the redundancy overheads to
achieve overall system reliability consumes all extra area afforded by reduced gate size. All points
below (better system reliability) and left (less area) from any point of these curves are acceptable.
Points right or above all points of these curves are unacceptable, because system built using smaller

6



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
10

−20

10
−15

10
−10

10
−5

10
0

(a
g
/a

g0
)
0.5

p
ro

b
a

b
ili

ty
 o

f 
g

a
te

 f
a

ilu
re

n=3

n=5

n=7

n=9

n=11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
10

−20

10
−15

10
−10

10
−5

10
0

(a
g
/a

g0
)
0.5

p
ro

b
a

b
ili

ty
 o

f 
g

a
te

 f
a

ilu
re

n=3

n=5

n=7

n=9

n=11

unacceptable

acceptable

Figure 2. Minimum affordable gate reliability for reduced device size.
less reliable gates will occupy more area than non-redundant system built using bigger reliable
gates. The right plot on the Fig. 2 shows the acceptable region for the various levels of redundancy.

3 Generalized Scaling Model

The results obtained in the previous section were predicated on both voters and wires being
perfectly reliable. Let us reconsider these in turn. First we assumed voters can be assumed to
be perfectly reliable at no cost. This is reasonable if redundancy is not applied at a very low
hierarchical level. In this case each block’s cost will be orders of magnitude higher than the cost
of voters. Indeed, first the complexity of single bit voter is very small. Second the number of such
voters is proportional to the number of external wires which by Rent’s Rule scales as M r (r ≈
0.6 − 0.7) which is small relative to M . Thus one could in principle use ‘big’ or more reliable
devices to implement voters at a negligible area cost.

The second assumption that wires are reliable is harder to justify. On one hand it is likely that
ionizing particles, as a source of soft faults, are more likely to impact active device areas than
signals across wires. However it is not clear whether wires in emerging technologies might not
also be vulnerable to ionizing particles. If this were the case, then a reasonable model would be a
probability of wire failure which is proportional to its length (or equivalently its area). On the other
hand it is widely recognized that other internal sources of transient errors are of critical concern.
For example coupling among wires is data dependent and might be modeled as a probability of
failure which is proportional to wire length. Also, delay variability, in some cases may be data
dependent 1 and might again be modeled as a random event. Though in this case, it is not clear that
the probability of failure is proportional to wire length, it is true that a longer wire would have a
higher probability of failure. To better capture concerns with the reliability of wires and investigate
their importance relative to gate reliability we shall revise Assumption 2.5 as follows.
Assumption 3.1. (General reliability and redundancy across hierarchical levels)
a. The probability of failure of a system is the sum of the failure probability of its constituent blocks.

A block of size M0 gates and total wire length L0 has a probability of failure p(M0) =
M0pg + L0pw where pg is the probability of failure of a gate and pw is the probability of
failure of a wire per unit length. Voters are assumed to be reliable.

b. Spatial n-way redundancy is used to enhance a system’s reliability. For a system of total size
MS gates, we assume redundancy can be applied at any of a continuum of hierarchical levels,
indexed by the size of the blocks M0 where M0 can range from 1 to MS gates.

1For example the critical path in an adder becomes important only for rare inputs resulting in carries having to be
propagated across the entire word.
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Figure 3. Top left, system overhead in area/gate and reliability as the hierarchical
level which redundancy is applied varies. Top right and left bottom minimum af-
fordable reliability for reduced device size. Bottom right, tradeoff between gate reli-
ability (pg) and wires reliability (pw) at different reduced device sizes s = (ag/ag0)

0.5.
c. When redundancy is applied at level M0 we assume that ‘long’ wires, i.e., interconnecting blocks

of size M0 or above are made reliable but have greater area per unit length by factor ko.
The key idea underlying this assumption is as follows. When spatial redundancy is applied

at a certain scale, i.e., blocks of size M0. ‘Short’ wires within the block are assumed to have a
probability of failure which is linear in their length, and contribute to the block’s failure. However
‘long’ wires that interconnect blocks of size M0 and above, end up being too long and unreliable,
i.e., reliability becomes wire dominated. Thus it makes sense to make long wires reliable. This
can be achieved by dividing a wire into shorter sections and applying redundancy to these sections.
Or possibly making long wires wider introduce a wider spacing among wires to reduce coupling.
In either case making long wires reliable comes at some additional area overhead which in our
assumption is modeled by the factor ko. As in the previous section this increases design scaling
factor d by a factor ko in Eq 2. For example in the results below it is k0 = 3 assuming 3-way
redundancy is applied to sections of a long wire.

The top left graph in Fig. 3 exhibits the area/gate overhead and system reliability under our
general model where redundancy is applied at different hierarchical levels M0 and fixed pg = 10−14

and pw (pw/pg = 0.03). For contrast, basic model (previously shown in Fig. 1) is included showing
the dramatic impact of unreliable wires on overheads and system reliability. The top right graphs
in the figure exhibit the new maximum possible probability of failure per gate that can be afforded
as minimal device size gets smaller with respect to minimal size of reliable device. The bottom left
graph shows only the bounding curves, but it does this for several rations pw/pg. These are akin
to the results Fig. 2 for the basic model. Finally the graph on the bottom right shows maximum
affordable probability of failure for gates (pg) and wires (pw) for various device scales. As can be
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seen in the figure that knee of curves moves to the right as we increase density (the total range of
ratio pw/pg is fixed to 10−6 − 102). That means that for higher density reliability of wires becomes
more important than reliability of gates. This could be expected as for higher densities we are
increasingly in a wire dominated regime, so their reliability is increasingly a concern.

4 Conclusion

In this paper we developed a new model area scaling for wire dominated systems to study
density-reliability tradeoffs for future technologies. The motivation was to evaluate when smaller
less reliable devices make sense and at what hierarchical levels (granularity) one should incorporate
spatial redundancy. To our knowledge this is the first attempt to evaluate such tradeoffs. Perhaps
the most interesting result emerging from our work is a study of the tension between reliability of
devices vs wires vs density. Our results indicate how wire reliability becomes more critical as the
technology density increases. Although area can be used as a crude proxy for power, it would be
interesting to further enhance the model to capture the power density issues.
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